ECONOMIC AND ENVIRONMENTAL ASPECTS OF ORGANIZATION THE TERRITORY OF ECOLOGICALLY CLEAN AGRICULTURAL LAND

Introduction. The foundation of the creation of ecologically clean land masses is the economic organization of the territory. The leading component of ecologically safe land use is the need to determine the suitability of land soils for the cultivation of raion crops and the maintenance of maximum soil quality adapted to the quality of crop rotation.

Aim and tasks. In the article the purpose of planning the organization of land mass structures is determined. The task of the internal land management is to formulate a strategy for using land masses that would maximally focus on the actions of land users in optimizing, transforming and using land to the natural conditions of the region.

Research results. Measures to create ecologically pure land masses are carried out directly at agricultural enterprises, therefore, agricultural land use is a prerequisite for them. The organization of agricultural land use envisages for business entities, the establishment of a warehouse, the transformation of lands and conservation of degraded and low productivity land, which at the present stage has become the most effective factor in the environmental optimization of land use. Agroecological organization of the territory includes measures on four systemic properties of agroecosystems: productivity, stability, stability and uniformity. All four properties are interrelated in agroecosystems. Without these links it is impossible to organize the territory in order to create conditions for rational use and protection of land, which is demanded by the agricultural land management system.

Conclusion. In the article the necessity of characterization of qualitative and quantitative characteristics of lands is grounded in order to find out the influence of the creation of the land mass and the appearance of possible dangers. The basic stages of the transition to environmentally safe agriculture and the formation of ecologically clean land masses have been determined. The types of development of the land mass are described: one-time and step-by-step. The complex problems that may be encountered by an enterprise of any ownership type in the transition to the maintenance of ecologically pure agriculture are determined. Creation of ecologically pure massifs of lands and agroecological organization of the territory includes a system of measures for the adaptation of agricultural production, agriculture to the peculiarities of the natural environment, along with the system of levers of state management of rational ecologically safe use of agricultural land. So the necessity of state support and motivation for enterprises planning to switch to the production of ecologically clean products and the formation of ecologically clean land masses has been substantiated.

Keywords: ecologically clean land, land masses, natural environment, agroecological organization, enterprise, ecologically pure massifs.
Ганна Тютюнник
Аспірант,
Інститут проблем ринку та економіко-екологічних досліджень НАН України,
Одеса, Україна
E-mail: ecoregnaturre@ukr.net
orcid.org/0000-0003-4864-6129

Отримано: Грудень, 2017
Прийнято: Лютій, 2018

Проблема. У статті розглянуто роль та шляхи організації екологічно чистих земель сільськогосподарського призначення. Основою створення екологічно-чистих земельних масивів є внутрішньогосподарська організація території. Провідною складовою екологічно-безпечного землекористування потребує бути визначення придатності ґрунтів земельних ділянок для вирощування районованих сільгоспкультур і ведення максимально приєднаних до якості ґрунтового покриву сівозміною. Визначені комплексні проблеми, з якими може зіткнутися підприємство будь-якої форми власності при переході на ведення екологічно чистого землеробства.

Мета та завдання. Визначено мету планування організації земельних масивів. Обґрунтовано основні етапи переходу на екологічно безпечне землеробство і формування екологічно чистих земельних масивів.

Результати. Охарактеризовано типи освоєння земельного масиву: одноразовий і поетапний. Доведено необхідність якісних та кількісних характеристик земель з метою їх виведення на екологічно чисте землеробство. Визначено, що завданням внутрішньогосподарського управління територією є формування стратегії використання земельних масивів, що максимально орієнтована на дії землекористувачів в оптимізації, перетворення земель і використання земель у природних умовах регіону.

Заходи щодо створення екологічно чистих масивів земель здійснюються безперервоно на сільськогосподарських підприємствах, які організація сільськогосподарського землеобробіття є необхідною умовою для них. Організація сільськогосподарського землеобробіття передбачає для суб’єктів господарювання, встановлення складу, трансформацію угідь та забезпечення високого рівня продуктивності земель, яка на сучасному етапі стала найефективнішим фактором екологічної оптимізації землеобробіття. Обґрунтовано необхідність державної підтримки та мотивації для підприємств, які планують перейти на виробництво екологічно чистих продуктів та формування екологічно чистих масивів земель.

Висновки. Створення екологічно чистих масивів земель та агроекологічної організації території включає в себе систему заходів щодо адаптації сільськогосподарського виробництва, сільського господарства до особливостей природного середовища, а також системи важелів державного управління раціональним екологічно безпечним використанням сільськогосподарської продукції. Агроекологічна організація території включає заходи щодо чотирьох системних властивостей агроекосистем: продуктивність, стабільність та однорідність. Всі чотири властивості взаємопов’язані в агроекосистемах. Без цих властивостей неможливо організувати територію для створення умов щодо раціонального використання та охорони земель землекористувачів, які вимагається система землеустрою сільськогосподарського призначення.

Ключові слова. екологічно чиста земля, земельні масиви, природне середовище, агроекологічна організація, підприємство, екологічно чисті масиви.
Introduction. The foundation of the creation of ecologically clean land masses is the economic organization of the territory. The leading component of ecologically safe land use is the need to determine the suitability of land soils for the cultivation of raion crops and the maintenance of maximum soil quality adapted to the quality of crop rotation [1].

Analysis of recent research. Investigation of scientific issues related to the organization of the territory of agricultural enterprises has been reflected in the works of A. Antipov, YU.M. Semenov [2], A.Ya. Sokhnich, P.P. Kolodiy [4], and others.

Aim and tasks. The task of the organization of the territory of ecologically clean agricultural land is to formulate a strategy for using land masses that would maximally focus on the actions of land users in optimizing, transforming and using land to the natural conditions of the region.

Measures to create the ecologically clean land masses are carried out directly at agricultural enterprises, therefore, agricultural land is a prerequisite for them. The organization of agricultural land envisages for business entities, the establishment of a warehouse, the transformation of land and the conservation of degraded and low-productive land.

Main results. The purpose of land-use planning is to ensure that important attributes of land use are sustainable. These attributes are divided into three groups: infrastructure objects incl. natural resources (e.g. open spaces, river basins, natural areas and wetlands) and public safety (e.g., the avoidance of floodplains, unstable soils and fire danger).

The sustainability of land use for its further usage in agricultural circulation and acquisition the desired results is closely linked to the agro-environmental organization of the territory. So agroecological organization of land is a set of measures for agricultural land use with the purpose of obtaining crop and livestock products while preserving agricultural resources (soil cover, natural forage lands, hydrological resources of agroecosystems), biodiversity and simultaneous protection against pollution of the environment and the resulting products.

Agroecological organization of the territory includes measures on four systemic properties of agroecosystems: productivity, stability, stability and uniformity. All four properties are interrelated in agroecosystems. Without these links it is impossible to organize the territory in order to create conditions for rational use and protection of land, which is demanded by the agricultural land management system.

Mandatory attention should be paid to the definition of the danger of impact on the development of land, which will allow the development of alternative approaches to the achievement of goals (for example, provisions, privileges, as well as public procurement), to select and implement the best.

An important step in the land use planning is to find out how the use of land will affect the current local conditions. The process initiates a collection of stakeholders to work with environmentalists to identify the areas that need to be restored. This group includes developers, landowners, designers, environmental advocates for decision making.

Thus, with the introduction of agricultural use of ecologically clean land masses, it will be possible to observe significant improvements in the quality state of local conditions, namely, improvement of the chemical status of soils, restoration of bioproductivity of land, increase of resistance of agricultural crops to negative factors of influence.

Characteristics of land use should be compared, and a composite map is created to illustrate the district. This map is used to designate territories as a requirement for approval of all proposed events. If the state of land use is characterized by the manifestation of risks due to the effects of negative processes, then a number of mitigation measures must be taken. Such measures include the provision of kickbacks, the application of special rules and agreements.

The investigated area is subject to the diagnosis of the presence of environmentally sensitive areas before preparing proposals for the implementation of the project, which includes the development of criteria for assessing the sensitivity and importance of individual natural components; zoning of the
territory according to the values and sensitivity of individual natural components for the implementation of the target sectoral function; zone zoning according to sectoral goals; definition of types of measures and their planning in accordance with the branches of the economy [2].

If in the middle of the land mass, which is subject to the transition to ecologically clean available contaminated land, an important part of the transformation of the territory is the determination of soil contamination by the indicator plants and the classification of land use pollution, as well as the implementation of restorative and protective measures of the land masses. One of these regenerative methods is extraction by natural substances, which stimulates the redistribution of pollutants from solid phase to solution, for selective removal of contamination. Contaminated soil is excavated and processed outside the land massif. After processing, the soil returns to the original place.

Among the biological methods for the elimination of pollutants, the current technology, ecologically clean and inexpensive, which uses the metabolic diversity of some microorganisms to decompose and reduce the concentration of toxic compounds is considered bio weaving. Biological disposal or (bio-processing / bio-recovery) is a process of mineralization of toxic compounds by aerobic organisms, mainly indigenous, to inorganic forms (CO2 та H2O). Despite a number of effective measures, there are land that does not recover at all, that is, those that are subject to temporary withdrawal from agricultural use for the protection and protection of other land masses (Table 1).

Table 1. The main indicators characterizing the soil properties and necessitating the withdrawal of agricultural land from agricultural and agricultural areas

<table>
<thead>
<tr>
<th>No.</th>
<th>Properties and soil characteristics</th>
<th>Units of measurement</th>
<th>Indicators of soil properties (taking into account the zonal location)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Radiation pollution</td>
<td>Density of terrain cesium-137, strontium -90, Qi / km.km</td>
<td>Cs-137 – more than 15 Qi / km.km</td>
</tr>
<tr>
<td>2</td>
<td>Erosion (rubbing and deflection)</td>
<td>Degree of soil erosion</td>
<td>Blurred, strong and middle-throated, strongly- and medium-deflated</td>
</tr>
<tr>
<td>3</td>
<td>Skeletonism</td>
<td>The content of debris of rocks is over 3 mm, %</td>
<td>>20% from both soil (30 m layer of soil)</td>
</tr>
</tbody>
</table>
| 4 | Lightweight granulometric warehouse | The content of physical clay (particles with a diameter of less than 0.01 mm), 5 | a) Polissia zone - up to 5
b) the forest-steppe zone - up to 10
c) Steppe zones and southern areas of the Forest-Steppe (except the Western) - up to 20 |
| 5 | Heavy granulometric composition | The content of physical clay (often with a diameter less than 0.01 mm) | a) in the Carpathian region - more than 50 in the other regions, in the province
b) in the forest rocks over 75 |
| 6 | Humus | Humus content,% by weight of soil | a) in Polissia - less than 0.6
b) in the forest-steppe - less than 1,5
c) in the Steppe - less than 2.0 |
| 7 | Reaction of soil solution | pH | In all zones a) to 4.0
b) more than 8.0 |
| 8 | The content of movable aluminum | mg / ekv per 100 soil | Over 3.0 |
| 9 | Content of absorbed sodium | % of the amount of absorbed bases | a) for atomorphic soils - more than 5
b) for semihydromorphic and hydromorphic soils - more than 10 |
| 10 | Salinity | % of the weight of the soil, in terms of toxic salts | more than 0,4 |
| 11 | Carbonate | Carbonate content,% by weight of soil | CaCO more than 30 |
| 12 | Physical degradation | Total mass, g / cu. cm | over 1.5 - for loamy and clay soils; more than 1,9 - for sandy soils and sandy soils |
| 13 | Chemical pollution | Maximum Permissible Concentration (MPC) | Excessive MAC |

Source: author's development based on [4]
They include [3]:

- land plotted as a result of earthquakes, landslides, formation of karst, flood, mining;
- medium and strong, alkaline, excessively moist, with high acidity, salinity, contaminated with chemicals, heavy metals and other compounds dangerous to human health;
- low productive land whose soils are characterized by natural low fertility;
- the land of floodplain of small rivers and streams, as well as drainage of flood lands, which are now in unsatisfactory condition and requiring re-naturalization, that is, their return to a state close to the original one.

All these measures contribute to the restoration of biodiversity and the creation of the best conditions for wildlife and fauna. At the same time, the costs of industrial resources and energy are reduced in support of the fertility of these lands, which generally contributes to reducing the man-made load on the ecosystem [5].

Making a decision about the transition to environmentally sound agriculture and the formation of ecologically clean land masses, it is necessary to clearly follow the transition process. Soil condition for organic certification requires careful attention.

The territory undergoing transformation requires the collection of information and the study of the characteristics of the object. This includes: studying geology, geomorphology and relief; climatic conditions; soil conditions; I will become a contamination of natural resources; On the basis of these data, the definition of agro-ecological types of land is made (Figure 1).

For clarity of research work, cartograms are formed: the slopes of the slopes; thermal resources; soil cover; the situation of the degree of pollution of the territory; complex ampeloeocological / agroecological cartograms.

The implementation of ecologically safe use of land requires the creation of a comprehensive map of the suitability of areas for cultivating crops, which depicts the quality characteristics of the territory in accordance with agroecological requirements of agricultural crops, the main directions of the use of nature and their respective functional areas in the planning area, including boundaries, land area, and also, the degree of suitability of these or other cultures. The data is shown on such maps, will serve to deepen the national, regional and local distribution of agricultural specialization, provide the territorial and agroecological characteristics of the land masses, geographic location of land of different agroecological significance.

On the basis of which one can calculate the economic efficiency of concentrating the production of the bulk of the necessary agricultural products and obtain the characteristics of natural resource potential, the objectives of nature conservation and the real use of the territory, as well as recommendations for environmentally appropriate nature management.

Eco-bonite analysis of the object will be required to identify the most suitable sites for the transition to ecologically clean land massifs, as well as territories requiring a complex of reproductive measures.

For easy land management and project design, land masses requiring the same intensity of use, agrotechnics and suitable for cultivation of certain types of crops need to be consolidated. Consolidation is an association of land in agro-landscape zones, homogeneous in terms of genetic, hydrological, geomorphological features, and microclimatic conditions that form an agro-landscaped array.

Within the allocated areas it is necessary to organize a group of agro-landscape arrays in shape, steepness and length of slopes and other indicators. For each group to define adaptive crop rotation, which is adapted to the data of soil and ecological conditions.

The objects of transformation to ecologically clean land masses require the implementation of measures for anti-erosion of the territory (creation of forest belts, road networks, earthworks, watercourses, formation of protective coastal protective bands), as well as intra-territorial organization of the territory, the definition of working and technological areas within the fields.
ORDER OF THE ECONOMIC AGROECOLOGICAL SITUATION OF THE TERRITORY

The choice of the land mass for transformation into ecologically clean

Gathering information, studying the characteristics of the object, compiling cartographic materials

Determination of the suitability of sites for the conversion to ecologically clean (carrying out ecological-bonitet analysis)

Define areas inside an array requiring recovery / withdrawal from agricultural circulation

Consolidation of homogeneous quality characteristics of land masses

Reducing risks on the land mass

Carrying out measures on elimination of pollutants, restoration of soils

Implementation of innovative equipment

Expectation of a three-year transition period of land plot’s "rest"

Disposing of agricultural crops

Economic use of ecologically clean lands

Fig.1. Stages of the economic agroecological organization of the territory

Source: author’s development
Fields are designed with the following conditions: ensuring the uniformity of the field on the suitability of soils for the cultivation of individual crops; provision of agricultural uniformity. As a result of different variants, preference is given to agroecological characteristics, since the non-conformity of the agrobiological requirements of some crops to the soil cover is more weighty than other negative factors that reduce yields.

To preserve the reproducible natural state of the land mass, a system of environmental and soil protection measures is being developed that ensure the ecological balance of the environment and the ecological safety of agricultural production (Figure 2).

Fig. 2. Agroecological organization of the territory of economic entities

Source: author's development
The system of transition to environmentally safe production with the creation of ecologically clean land masses for each form of ownership of the enterprise is conducted in a similar way (Figure 3).

The only thing that distinguishes the creation of lands with special characteristics is the type of development of the land mass: one-time and step-by-step.

The one-time transition causes the choice of land masses of the reference quality. In the opinion of the author, the use of this type of land is best suited for state-owned enterprises that can provide leadership, use and protection of resources from a single center.

High quality of land masses will allow to concentrate financial resources in the budget and use them for solving problems in nature management.

The gradual development of land of lower quality, which includes a number of reproductive measures, is better suited for private-ownership enterprises. In this case, part of the income from the use of this land resource is assigned to the private owner, the other part is sent in the form of payments on the basis of environmental rent for the land (tax). The owner of the natural resource will be interested in improving the quality of his land, as the rent, remains with the owner with the opportunity to direct it for rational use, protection and reproduction of the land mass with further increase in its quality and selling price [7] (Figure 4).

Complex problems that an enterprise of any ownership type may encounter when switching to environmentally sound farming can look like: risk management; planning of crop rotation; yield planning; pest and insect fighting; disease control of plants; elimination of pollutants (for a private enterprise); introduction of innovative equipment; quality management of products; search for product buyers; search markets for product sales.

The agroecological organization of the territory includes a system of levers of state management of rational ecologically safe use of agricultural land.

Ukrainian enterprises focusing on the formation of ecologically clean land masses and the maintenance of environmentally sound agriculture require state support, along with a reduction of a fixed land tax, the introduction of a simplified tax system and the replacement of the payment of income tax to raise wages for farm workers, in order to increase the employment of the population and work quality.
Fig. 4. Scheme of implementation of ecologically clean land mass in circulation of various organizational forms of agricultural enterprises

Source: author's development based on [7], [8]

In many countries of the world, the legislation provides for the payment of subsidies to farmers who supply the final product to the market. In Ukraine, still certified organic farms do not receive any subsidies from the state, therefore the price for the final organic product remains slightly higher than the conventional analogue [9].

A mandatory measure for the further development of the organic sector and ecologically safe agricultural production in general is the creation of a mechanism for motivating the formation of ecologically clean land masses and the production of ecologically clean products by agrarian enterprises, which will take into account the world tendencies of development of this sphere of management.
Conclusions and further research. Environmental management requires a clear change in the farming system. Restoring and improving the natural condition of the agro-landscape, in order to synthesize the most ecologically clean land massifs for the restoration of bioproductivity of the land, the creation of ecologically pure land masses serves to create humus formation.

However, the transformation of land masses in an ecologically clean way requires a 2-3-year transitional period.

The study of territories to translate them into ecologically safe requires a detailed collection and study of information on the characteristics of the objects. On the basis of collected and analyzed data, arrays may be subject to evaluation and differentiation by the nature of development for use by enterprises of various forms of ownership, with the aim of further improving the quality and their implementation.

As a result of a rather complicated procedure for the transfer to ecologically clean land masses, there is a pressing need to develop a system of measures to adapt agricultural production by individual enterprises to the features of the new natural environment and to provide state support in the form of subsidies, compensations, price supplements and other subsidies, infrastructure, information and legal instruments of motivation.

Fig.5. Tools for motivating agricultural enterprises to create ecologically clean land massifs

Source: author's development based on [10, p. 195-201]

TOOLS

- Association of Producers ecological products, in order to formulate policy in the field of environmentally safe production
- Information support Financing of research in the field of sustainable agriculture
- Subsidization Compensation
- Financing agroecological programs Grants
- Reimbursement of expenses for certification of production Price supplements
- Financial support for the sale of organic products Development of marketing infrastructure
- Favorable lending Preferential taxation

73
REFERENCES

ЛІТЕРАТУРА

7. Мартієнко А.І. Теоретичні основи розвитку відносин власності на природні ресурси. Одеська: Інститут проблем ринку та економіко-екологічних досліджень НАН України, 2011. С. 336-350

9. Криницька О.О. Інституційні забезпечення розбудови земельних відносин України [Текст] : дис. ... кандидата екон. наук : спец. 08.00.03 / О.О. Криницька ; НАН України, Ін-т проблем ринку та економіко-екологічних досліджень. Одеса, 2015. 224 с.

10. Олійник О.Р. Міжнародний досвід стимулювання розвитку органічного виробництва та його використання у вітчизняній практиці. Інноваційна економіка. 2014. №4(53). С. 195-201